
Progetto RoboCare: sistema multi-agenti
con componenti fisse e robotiche mobili intelligenti

Settore “Piattaforme ITC abilitanti complesse ad oggetti distribuiti”
MIUR legge 449/97 per l’anno 2000

Robotic, Sensory and Problem Solving
Ingredients for the Future Home

A. Cesta2, L. Iocchi1, G.R. Leone1,
D. Nardi1, F. Pecora2, R. Rasconi2

1Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

{iocchi,leone,nardi}@dis.uniroma1.it

2Istituto di Scienze e Tecnologie della Cognizione
Consiglio Nazionale delle Ricerche
{name.surname}@istc.cnr.it

The RoboCare Technical Reports
—

RC-TR-0806-5

Robotic, Sensory and Problem Solving Ingredients for the Future Home
A. Cesta, L. Iocchi, G.R. Leone, D. Nardi, F. Pecora, R. Rasconi

Robocare Technical Report N. 5

June 2006

Corresponding Author:

Amedeo Cesta
Istituto di Scienze e Tecnologie della Cognizione - CNR (Italy)
amedeo.cesta@istc.cnr.it

“RoboCare: A Multi-Agent System with Intelligent Fixed and Mobile Robotic Components”
A project funded by the Italian Ministery for Education, University and Research (MIUR) under
Law 449/97 (Funds 2000).

http://robocare.istc.cnr.it

© 2006

ISTC-CNR
Consiglio Nazionale delle Ricerche
Istituto di Scienze e Tecnologie della Cognizione
Via S. Martino della Battaglia, 44 - 00185 ROMA

Robotic, Sensory and Problem-Solving
Ingredients for the Future Home

Amedeo Cesta2, Luca Iocchi1, G.Riccardo Leone12, Daniele Nardi1, Federico
Pecora2 and Riccardo Rasconi2

1 Dipartimento di Informatica e Sistemistica
University of Rome “La Sapienza”, Italy
<surname>@dis.uniroma1.it

2 Institute for Cognitive Science and Technology
National Research Council of Italy
<name.surname>@istc.cnr.it

Summary. RoboCare is a three-year Italian research project aimed at assessing
the extent to which different state-of-the-art technologies can benefit the creation
of an assistive environment for elder care. In its final year, the project focused
on producing a demonstration exhibiting an integration of robotic, sensory and
problem-solving software agents. This article describes the RoboCare Domestic
Environment, an experimental three-room flat in which a number of heterogeneous
robotic, domotic, and intelligent software agents provide domestic cognitive support
services for elderly people. The RDE is a deployed multi-agent system in which
agents coordinate their behavior to create user services such as non-intrusive moni-
toring of daily activities and activity management assistance. This article provides
a summary of the system’s key features, focusing on the integrated prototypical en-
vironment which was deployed in the RoboCare lab in Rome and exhibited at the
RoboCup 2006 competition.

1 Introduction

RoboCare is a three year research project3 which aims at developing multi
agent systems for the care of the aging population. The principal aim of Robo-
Care is to assess the extent to which different state-of-the-art technologies
can benefit the creation of an assistive environment for elder care, one of its
main driving forces being the increasing abundance of “intelligent” domestic
devices and affordable pervasive computing technology. It is with this aim that
the final year of the project focused on producing a demonstration exhibiting

3 This research is sponsored by MIUR (Italian Ministry of Education, University
and Research) under project RoboCare (A Multi-Agent System with Intelligent
Fixed and Mobile Robotic Components), L. 449/97.

2 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

an integration of robotic, sensory and problem-solving software agents. To this
end, an experimental setup which recreates a three-room flat was set up at the
ISTC-CNR in Rome, named The RoboCare Domestic Environment (RDE).
The RDE is intended as a testbed environment in which to test the ability
of heterogeneous robotic, domotic, and intelligent software agents to provide
cognitive support services for elderly people at home. Specifically, the RDE is
a deployed multi-agent system in which agents coordinate their behavior to
create user services such as non-intrusive monitoring of daily activities and
activity management assistance.

A key feature of the RDE is Lucia, a context-aware domestic robot devel-
oped by the RoboCare team at the ISTC-CNR4.

Fig. 1. Overall view of the RoboCare Do-
mestic Environment (RDE).

The robot is aimed at demon-
strating the feasibility of an em-
bodied interface between the as-
sisted elder and the smart home.
Thus, the RDE can be viewed as
a “robotically rich” environment
composed of sensors and software
agents whose overall purpose is
to:

• predict/prevent possibly haz-
ardous behavior;

• monitor the adherence to be-
havioral constraints defined
by a caregiver;

• provide basic services for user
interaction.

The system was partially re-
created in the RoboCup@Home

domestic environment during the RoboCup 2006 competition in Bremen5

where it was awarded third prize.

1.1 Components of the Multi-Agent System

The RDE is equipped with the following agents, which provide services of
various nature:

• Two fixed stereo cameras providing a People Localization and Tracking
(PLT) service, and a Posture Recognition (PR) service.

4 The development team is the result of a combined development effort stemming
from two partners of the RoboCare project, namely the Planning and Scheduling
Team at ISTC-CNR and SPQR at the University of Rome “La Sapienza”.

5 Competition homepage: http://www.ai.rug.nl/robocupathome/.

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 3

• A domestic service robot which is capable of navigating in the environment,
processing simple commands through an on-board speech recognition sys-
tem, as well as speaking to the assisted person through a voice synthesizer.
Synthesized speech is verbalized through a 3D representation of a woman’s
face, named Lucia.

• An ADL (Activities of Daily Living) monitor, a scheduling and execution
monitoring system which is responsible for monitoring the assisted per-
son’s daily activities and assessing the adherence to behavioral constraints
defined by a caregiver.

• One personal data assistant (PDA) on which a very simple four-button in-
terface is deployed. The interface allows to (1) summon the robot, (2) send
the robot to a specific location, (3) relay streaming video form the robot
to the PDA, and (4) stop the robot.

Lucia the robotic mediator was built to explore the added value of an
embodied companion in an intelligent home. Its mobility also provides the
basis for developing a number of added-value services which require physical
presence. Overall, Lucia is composed of two agents: a mobility subsystem and
a human-robot interface. These components are described in section 2.

A Stereo-vision based People Localization and Tracking service (PLT) pro-
vides the means to locate the assisted person. This environmental sensor was
deployed in Bremen in the form of an “intelligent coat-hanger”, demonstrating
easy setup and general applicability of vision-based systems for in-door appli-
cations. The system is scalable as multiple cameras can be used to improve
area coverage and precision. In addition, vision-based Posture Recognition
(PR) can be cascaded to the PLT computation in order to provide further
information on what the assisted person is doing. The sensory subsystem is
described in section 3.

Continuous feedback from the sensors allows to build a symbolic represen-
tation of the state of the environment and of the assisted elder. This infor-
mation is employed by a CSP-based schedule execution monitoring tool (T-
Rex [1, 2, 3]) to follow the occurrence of Activities of Daily Living (ADLs).
Aspects of daily life to be monitored are specified by a caregiver in the form
of complex temporal constraints among activities. Constraint violations lead
to system intervention (e.g., Lucia suggests “how about having lunch?”, or
warns “don’t take your medication on an empty stomach!”). The details of
the ADL monitor are shown in section 4.

Overall, the RDE is a collection of service-providing components of various
nature. Sensors contribute to building a symbolic representation of the state
of the environment and of the assisted person. Based on this information,
automated reasoning agents infer actions to be performed in the environment,
principally through the robotic mediator. Both enactment and sensing requires
the synergistic operation of multiple agents, such as robot mobility, speech
synthesis and recognition, and so on. For this reason, multi-agent coordination
is an important aspect of the RDE scenario. Section 5 is dedicated to the

4 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

description of the coordination mechanism, which occurs in the RDE’s current
configuration by means of Adopt-N [4], a distributed constraint reasoning
algorithm.

2 Lucia the Robotic Mediator

The mobile robotic platform, called Lucia, was built to explore the added value
of an “embodied” companion in an intelligent home. The robot’s mobility also
provides the basis for developing added-value services which require physical
presence.

Fig. 2. Lucia the
Robotic Mediator.

The robot hardware has been built on top of a Pioneer
platform, by adding additional sensors: a laser range
finder, a stereo camera, an omni-directional camera,
as well as computational resources: 2 laptops, one
for sensor processing and navigation, one for human-
robot interaction. In the following sections we first
describe the basic functionalities of the robot, specif-
ically navigation, path planning, mapping ang local-
ization; then the component for human-robot interac-
tion, i.e. speech recognition and speech synthesis.

Navigation. Navigation of the robot is based on
two components that are integrated togheter: a topo-
logical path planning and a reactive obstacle avoid-
ance module.

Mapping and localization. In our project we as-
sume that the robot acting in the domestic environ-
ment can map the environment before operating in
it and that only minor changes in the environment
occur during operations (e.g., pieces of furniture can
be moved). Therefore, our approach to mapping and
localization is divided in two phases: in the first one,
the robot is guided in the environment in order to
build a map (this is usually done only once when the

robot should operate in a new environment); in the second phase, the robot
localizes itself using the previously acquired map. Mapping and localization
services make use of a laser range finder that provides for accurate range
measures. Mapping is implemented through a scan matching approach (since
domestic environments are usually small enough not to require more sophisti-
cated SLAM approaches) and localization is obtained through a particle filter
based approach.

Speech recognition and synthesis. Lucia is also endowed with verbal user
interaction skills: speech recognition is achieved with the Sonic speech recogni-
tion system (University of Colorado)6, while speech synthesis occurs through
6 See cslr.colorado.edu/beginweb/speech_recognition/sonic.html for details.

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 5

the Lucia talking head [5] developed at ISTC-CNR-Padua7 (Lucia the robotic
mediator takes its name from the talking head).

3 Environmental Sensor for People Tracking

A major objective of the RoboCare project was the integration of different
intelligent components, that are deployed not only on board of a mobile robot,
but also as ”intelligent” sensors in the environment. In particular, we have
developed a People Localization and Tracking service8 (PLT) based on a stereo
vision sensor, which provides the means to locate the assisted person and other
people in the environment.

Background
Modelling

BG model

Foreground
Segmentation

stereo images

Stereo
Computation

disparity

Plan View
Projection

image
blobs

Tracks DB

Person
Modelling

world
blobs

Tracker

Person
Models

left grayscale image

left grayscale image

left color image

Fig. 3. PLT System Architecture

The general architecture of the PLT System is depicted in Figure 3. The
input is a stream of stereo images captured by a calibrated stereo-vision device
and processed by the Stereo Computation module, extracting disparity and
3-D information about the scene (a description of the stereo vision system can
be found in [6]).

Subsequently, the Background Modelling maintains an updated model of
the background, composed by three components: intensities, disparities, and
edges. Then Foreground Segmentation extracts foreground pixels and image
blobs from the current image, by a type of background subtraction that com-
bines intensity and disparity information. Points in the foreground are then
projectd in the plan-view within the Plan View Projection module, by using
7 See also www.pd.istc.cnr.it/LUCIA/ for details.
8 www.dis.uniroma1.it/∼iocchi/PLT

6 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

3-D information computed by the stereo algorithm. This module computes
world blobs that identify moving objects in the environment. World blobs are
also used to refine image segmentation detecting situations of partial occlu-
sions between people.

Once we have a set of segmented figures for each person, the People Mod-
elling module creates and maintain appearance models for the people being
tracked; these information are then passed to the Tracker module, which main-
tains and tracks a set of tracked objects, associated with world blobs extracted
by previous modules. Tracking is performed by using a Kalman Filter on a
state that is formed by the location and velocity of the person in the world
and by his/her appearance model. The state for each person is updated by
using a constant velocity model for person location and by also considering
a similarity measure between appearance models and current segmented fig-
ures of each tracked person. The tracker mechanism is able to reliably track
multiple people in situations of partial mutual occlusions.

3.1 Image Segmentation

When using a static camera for object detection and tracking, background
model maintenance and consequent background subtraction is a common tech-
nique for image segmentation and for identifying foreground objects. In or-
der to account for variations in illuminations, shadows, reflections, and back-
ground changes, it is useful to integrate information about intensity and range
and to dynamically update the background model. Moreover, such an up-
date must be different in the parts of the image where there are moving
objects [7, 8, 9, 10].

The implementation of the image segmentation module thus requires the
computation of a background model and a subsequent foreground extraction
procedure.

Dynamic Background Modelling

In our work we maintain a background model including information of inten-
sity, disparity, and edges, as a unimodal probability distribution represented
with a single Gaussian. Although more sophisticated representations can be
used (e.g. Gaussian mixture [7, 9, 10]), we decided to use a simple model for
efficiency reasons. We also decided not to use color information in the model,
since intensity and range usually provide a good segmentation, while reducing
computational time.

The model of the background is represented at every time t and for ev-
ery pixel i by a vector Xt,i, including information about intensity, disparity,
and edges computed with a Sobel operator. In order to take into account the
uncertainty in these measures, we use a Gaussian distribution over Xt,i, de-
noted by mean µXt,i and variance σ2

Xt,i
. Moreover, we assume the values for

intensity, disparity, and edges to be independent from each other.

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 7

This model is dynamically updated at every cycle (i.e., for each new stereo
image every 100 ms) and is controlled by a learning factor αt,i that changes
over time t and is different for every pixel i.

µXt,i
= (1− αt,i)µXt−1,i

+ αt,i Xt,i

σ2
Xt,i

= (1− αt,i)σ2
Xt−1,i

+ αt,i (Xt,i − µXt−1,i
)2

The learning factor αt,i is set to a higher value (e.g. 0.25) in the first
few frames (e.g. 5 seconds) after the application is started, in order to quickly
acquire a model of the background. In this phase we assume the scene contains
only background objects. After this training phase αt,i is set to a lower nominal
value (e.g. 0.1) and modified depending on the status of pixel i as explained
below. Notice that the training phase can be completely removed and the
system is able to build a background model even in presence of foreground
moving objects since the beginning of the application run. Of course it will
require a longer time to compute this model.

After the training phase the learning factor αt,i is increased (e.g. 0.15)
when there are no moving objects in the scene (speeding up model updating),
and is decreased (or set to zero) in the regions of the image where there are
moving objects. In this way we are able to quickly update the background
model in those parts of the image that contain stationary objects and avoid
including people (and, in general, foreground objects) in the background.

In order to determine regions of the images in which background should not
be updated, the work in [10] proposes to compute activities of pixels based on
intensity difference with respect to the previous frame. In our work, instead,
we have computed activities of pixels as their difference between the edges in
the current image and the background edge model. The motivation behind this
choice is that people produce variations in their edges over time even if they
are standing still (due to breathing, small variations of pose, etc.), while static
objects, such as chairs and tables, do not. However, note that edge variations
correctly determine only the contour of a person or moving foreground object,
and not all the pixels inside this contour; therefore, if we consider as active
only those pixels that have high edge variation, we may not be able to correctly
identify the internal pixels of a person. For example, if a person with uniform
color clothes is standing still in a scene, there is high probability that the
internal pixels of his/her body have constant intensity over time, and a method
for background update based only on intensity differences (e.g., [10]) will
eventually integrate these internal pixels into the background.

To overcome this problem we have implemented a procedure that com-
putes activities of pixels included in a contour with high edge variation. This
computation is based on first determining horizontal and vertical activities
Ht(u) and Vt(u), as the sum over the pixels (u, v) in the image, of the vari-
ation between current edge E and edge component of the background model
µE , for each row/column of the image.

8 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

Ht(v) =
∑

u

|Et,(u,v) − µE,t,(u,v)| Vt(u) =
∑

v

|Et,(u,v) − µE,t,(u,v)|

Then, these values are combined in order to assign higher activity values
to those pixels that belong to both a column and a row with high horizontal
and vertical activity.

At(u, v) = (1− λ) At−1(u, v) + λHt(v)Vt(u)

In this way, the pixels inside a contour determined by edge variations will
be assigned a high activity level. Note also that, since the term Ht(v)Vt(u)
takes into account internal pixels for people with uniformly colored clothes,
the learning factor λ can be set to a high value to quickly respond to changes.
The value At(u, v) is then used for determining the learning factor of the
background model: the higher the activity At(u, v) at each pixel i = (u, v) the
lower the learning factor αt,i.

Foreground segmentation

Foreground segmentation is then performed by background subtraction from
the current intensity and disparity images. By taking into account both in-
tensity and disparity information, we are able to correctly deal with shadows,
detected as intensity changes, but not disparity changes, and foreground ob-
jects that have the same color as the background, but different disparities.
Therefore, by combining intensity and disparity information in this way, we
are able to avoid false positives due to shadows, and false negatives due to sim-
ilar colors, which typically affect systems based only on intensity background
modeling.

The final steps of the foreground segmentation module are to compute
connected components (i.e. image blobs) and characterize the foreground ob-
jects in the image space. These objects are then passed to the Plan View
Segmentation module.

3.2 Plan View Segmentation

In many applications it is important to know the 3-D world locations of the
tracked objects. We do this by employing a plan view [11]. This representation
also makes it easier to detect partial occlusions between people.

Our approach projects all foreground points into the plan view reference
system, by using the stereo calibration information to map disparities into the
sensor’s 3-D coordinate system and then the external calibration information
to map these points from the sensor’s 3-D coordinate system to the world’s
3-D coordinate system.

For plan view segmentation, we compute a height map, that is a discrete
map relative to the ground plane in the scene, where each cell of the height
map is filled with the maximum height of all the 3-D points whose projection

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 9

lies in that cell, in such a way that higher objects (e.g., people) will have
a high score. The height map is smoothed with a Gaussian filter to remove
noise, and then it is searched to detect connected components that we call
world blobs.

Since we are interested in person detection, world blobs are filtered on the
basis of their size in the plan view and their height, thus removing blobs with
sizes and heights inconsistent with people. Notice that even in situations of
partial occlusions, the world blob of the occluded person has generally a size
and a height similar to the case in which this person is not occluded. This is
due to the position of the camera and to the use of plan view information.
In fact, the upper part of a person is typically visible even when she/he is
occluded, and our method for computing the height map is not sensible to the
lack of information in the lower parts of a person. Therefore, the tuning of
the filter is not very critical and we prefer to have a filter that is not very
selective on such world blobs, since possible false detections are then solved
by the tracked module (for example, a noise producing an incorrect world
blob isolated in time will be discarded by the tracker since the observation is
not confirmed over time). However, it is necessary to observe that the method
proposed in this paper does not use any technique for people recognition, and
therefore if a moving object with similar dimensions of a person (e.g. a high
mobile robot) moves in the environment, then this object will be tracked by
the system.

Fig. 4. The different phases of the image segmentation

10 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

3.3 Tracking

We have chosen a probabilistic approach for tracking multiple people, based
on a mono-modal probability distribution, like in [12, 13, 14]. Tracking is
performed by maintaining a set of tracked objects xt, updated with the mea-
surements of world blobs and appearance models zt, extracted in the previous
segmentation phase. As a difference with previous approaches, the state of
each tracked object has two components: the spatial parameters, and the ap-
pearance.

3.4 People Modelling

In order to track people over time in the presence of occlusions, or when
they leave and re-enter the scene, it is necessary to have a model of the
tracked people. Several models for people tracking have been developed (see
for example [15, 16, 17, 18]), but color histograms and color templates (as
presented in [16]) are not sufficient for capturing complete appearance models,
because they do not take into account the actual position of the colors on the
person.

Following [15, 17], we have defined temporal color-based appearance models
of a fixed resolution, represented as a set of unimodal probability distributions
in the RGB space (i.e. 3-D Gaussian), for each pixel of the model. Compu-
tation of such models is performed by first scaling the portion of the image
characterized by a person blob to a fixed resolution and then updating the
probability distribution for each pixel in the model.

Appearance models computed at this stage are used during the tracking
step for improving reliability of data association process (see Section 3.3).

3.5 Probabilistic tracking and data association

Tracking is performed with a probabilistic formulation. The uncertainty about
the ith tracked object at the time t is represented by a multi-variate normal
distribution, N(µi,t, σi,t), and a weighting factor wi,t.

The probability distribution p(xt) for the tracked people is represented as
a collection of Gaussians and weights. Each Gaussian models the information
about a single person, and the weight models the confidence about the person
estimate. Therefore p(xt) is represented as a set Pt = {N(µi,t, σi,t), wi,t | i =
1..n} where N(µi,t, σi,t) is a Gaussian in a multi-dimensional space repre-
senting the ith person that is tracked at time t and wi,t a weighting factor.
Similarly, observations in zt are represented as a set of Gaussian distributions
Zt = {N(µ′j,t, σ

′
j,t) | j = 1..m} denoting position and appearance information

of detected people in the current frame.
The probability distribution p(xt|zt) is computed by using a set of Kalman

Filters. The system model used for predicting the people position is the con-
stant velocity model, while their appearance is updated with a constant model.

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 11

This model is adequate for many normal situations in which people walk in an
environment. It provides a clean way to smooth the trajectories and to hold
onto a person that is partially occluded for a few frames. However, multi-
modal representations (e.g. [19]) should be used in more complex situations.

Data association is an important issue to deal with. In general, at every
step, the tracker must make an association between m observations (world
blobs) and n people (tracked objects).

Association is solved by computing the Mahalanobis distance di,j between
the ith tracked object N(µi,t|t−1, σi,t|t−1) and the jth observation N(µ′j,t, σ

′
j,t).

Here the Gaussian N(µi,t|t−1, σi,t|t−1) is the predicted estimate of the ith

person.
An association between the predicted state of the system Pt|t−1 and the

current observations Zt is denoted with a function f , that associates each
tracked person i to an observation j, with i = 1..n, j = 1..m, and f(i) 6=
f(j), ∀i 6= j. The special value ⊥ is used for denoting that the person is not
associated to any observation (i.e. f(i) = ⊥). Let F be the set of all possible
associations of the current tracked people with current observations. Data
association is then computed by solving the following minimization problem

argmin
f∈F

∑

i

di,f(i)

where a fixed maximum value is used for di,f(i) when f(i) = ⊥.
Although this is a combinatorial problem, the size of the sets Pt and Zt

on which this is applied are very limited (not greater than 4), so |F| is small
and this problem can be effectively solved.

The association f∗, that is the solution of this problem, is chosen and
used for updating p(xt), i.e. for computing the new status of the system Pt.
During the update step the weights wi,t are computed from wi,t−1 and di,f(i),
and if a weight goes below a given threshold, the person is considered lost.
Moreover, for observations in Zt that are not associated to any person by f∗

a new Gaussian in entered in Pt.
The main difference with previous approaches [12, 13, 14] is that we inte-

grate both plan-view and appearance information in the status of the system,
and by solving the above optimization problem we find the best matching
between observations and tracker status by considering in an integrated way
the information about the position of the people in the environment and their
appearance.

Finally, in order to increase robustness of the system to tracking errors,
a finite state machine is associated to any person being tracked. Each track
can be in one of these status: new, candidate, tracked, lost, terminated. The
transition from one status to another depends on the current association f∗

as well as on the track history. For example, after a new observation of a
person, the corresponding track becomes a candidate, if it is confirmed for a
certain number of frames it is moved to the tracked status; then if the track

12 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

is not observed it gets the lost status that is maintained for some frames. In
case the track is observed again it goes back to the tracked status, thus cor-
rectly dealing with partial occlusions (e.g., one person in front of another) and
bridging short-term breaks in a person’s path (i.e. short-term re-acquisition).
Otherwise, after some time, the track is declared terminated.

4 Monitoring Activities of Daily Living

This section focuses on the Execution Monitoring System, or Activity of Daily
Living (ADL) monitor. The ability to detect and follow the actions of the
assisted person in the environment is one of the central features of the system.
The main goal is infact to cognitively and phisically support the assisted
person while continously guaranteeing his/her independence, well-being and
safety. The desired behaviour the assisted person should adhere to in order
to achieve the previous goal, is initially decided by a caregiver (a doctor, or
a family member): the tool we devised encourages easy interaction even for
people who are not acquainted with the technology underlying the system9,
and allows to specify the desired behavior in terms of activities which are
particularly significant for the person’s health and/or safety. Of course, not
all the daily activities are supposed to be monitored; furthermore, the system
should allow for a configurable degree of tolerance with respect to the action
timings. Timing’s strictness of the schedule will be decided by the caregiver
and will depend on the criticality of the activities at hand.

Activity recognition and management plays a significant role in advice and
warning synthesis, as it will be shown shortly. The desired behavior is initially
synthesized in terms of a set of activities to be monitored (schedule), bound
one another through complex temporal relationships. These temporal links are
of great importance: infact, not only does the schedule need to be constantly
monitored in order to know which activities are indeed being executed; also,
the time at which the activities are performed is essential, as delays or antici-
pations on temporally related tasks might trigger some initiative on behalf of
the monitoring system. Through temporal constraint analysis, the ADL mon-
itor decides which pieces of information to store and make available to the
other agents, in order to ensure a correct global reaction. Some intervention
might even be directly triggered by the ADL monitor analysis itself in a more
reactive fashion, depending on the gravity of the occurred circumstance. In
general, the system is able to assess the situation by querying all available
agents, which are designed to act independently and asynchronously.

9 The description of the modeling tool is outside the scope of this paper — see [1]
for further details.

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 13

4.1 The Schedule Representation

The scheduling technology underlying the whole system is based on Constraint
Satisfaction Problem (CSP) solving techniques. More specifically, the baseline
schedule defined by the caregiver is represented in a temporal CSP, usually
called Temporal Constraint Network (TCN) [20]. The variables in a temporal
CSP represent the time points, which can be constrained one another by
binding the distance between any two variables. Every activity in the schedule
is associated with two time points (the start and the end time); by imposing
distance constraints among the time points in the TCN, it is possible to define
complex temporal relations among the activities, task durations as well as
general separation constraints. TCN’s consistency on insertion of new time
points and/or new constraints among existing time points is checked through
proper propagation algorithms ([20]).

et(T2)st(T1)

et(T1) st(T2)
d1

−d1

d2

−d2
a

−b

T1 T2

Fig. 5. A simple schedule, represented as a temporal CSP: notice the temporal
constraints insisting on the time points.

Figure 5 depicts a simple but explanatory example: the shown schedule
is composed of two activities T1 and T2. Each activity is characterized by a
start point and an end point: activity T1 has a duration equal to d1 while
T2 has a duration equal to d2 temporal units; the activities of the schedule
are supposed to be bound by specific temporal constraints imposed by the
caregiver: T2 should start at least a time units after activity T1 has started,
and T2 must end within b time units after the beginning of T1.

Under the hypothesis that the schedule represents the activities that have
to be monitored, each imposed constraint helps to specify the desired behavior
we would like the assisted person to adhere to. For instance, T1 might represent
the activity of having breakfast and T2 the activity of taking a medicine: in
this case, the constraints would model the circumstance that the medicines
should not be taken neither too soon nor too late after eating; the values
associated with the temporal constraints quantitatively specify the extent
of such bounds. According to this representation it is possible to describe
behavioral patterns which can be very complex, either in terms of the number
of activities involved, and in terms of temporal constraints which may insist
among them.

Note that this modeling paradigm implicitly allows for temporal flexibility
in the synthesis of the desired behavioral pattern: in fact, the possibility to

14 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

introduce miminum and maximum temporal constraints permits to specify
temporal slacks in order to allow for some tolerance before a constraint is
deemed violated. It is straightforward how this is the only viable solution in
the context of execution monitoring of human behaviors, as it avoids to put
the assisted person (and the caregiver!) against unacceptably strict, and thus
unmanageable, action sequences.

4.2 Execution Monitoring vs. Execution Control

The problem of execution monitoring of activities belonging to a pre-defined
schedule represents a delicate issue, the main reason being that the words
“control” and “monitoring” are often interpreted as synonyms10. For the re-
maining of this document, by “control” we mean the deployment of a correc-
tive action aiming at altering the state of the world; by “monitoring” we mean
the simple action of observing reality, giving up any volition of interference;

Normally, given a number of activities that have to be scheduled, the main
goal of every scheduling procedure is to find a temporal allocation for all the
start times so as to meet some desired conditions such as makespan optimality
or temporal flexibility maximization, to mention but two. After an initial
schedule has been computed, the next step is to put it into execution in a real
working environment, and constantly “follow” its execution through proper
algorithms. In this case, the challenge is to use intelligent repair strategies
to counteract the occurrence of possible exogenous events that may occur
at execution time, minimizing all possible disruptions, therefore maintaining
as much as possible the schedule’s initial characteristics. The activities can
thus be interpreted as commands to be dispatched at scheduled times, while
the rescheduling action is seen as a necessary reshuffling of the activities,
performed according to conservative criteria. In this respect, rescheduling is
a control action in that it commits itself to changing the future actions which
are going to influence real world’s evolution (for instance, deciding to swap
the execution of two commands).

On the other hand, in the RoboCare context, we obviously have no con-
trol whatsoever in the actions the assisted person is going to perform, despite
the caregiver’s prescriptions. Therefore, the task of following the person’s be-
havior falls exclusively in the monitoring category. The system limits itself
in taking note of the evolution of the environment, continuosly keeping an
updated internal representation of the latter, and possibly reacting to some
significant events, if deemed necessary. The monitoring efforts will therefore
focus upon: (1) keeping the internal representation of the real world con-
sistent with the behavioral decisions of the assisted person at all times, and
(2) performing the necessary rescheduling actions so as to keep at a maximum
the number of temporal constraints originally imposed by the caregiver. This

10 In the italian language, for instance, “to control” and “to monitor” are translated
with the same term “controllare”.

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 15

second point is of great importance as the maintenance of temporal informa-
tion in terms of constraints is essential in order to perform correct situation
assessment and/or future-consistent what-if analysis.

4.3 Constraint Management in the RoboCare Context

An extrememly important role in the execution monitoring problem within
the RoboCare context, is played by the management of all the temporal
constraints present in the schedule. As the environment sensing cycle com-
mences, the system periodically checks the state of the monitored area, trying
to detect and recognize the execution state of all the activities.

Regardless of the prescribed behavior described in the baseline schedule,
the assisted person is obviously free to act as she likes: this basicly means that
at each detection cyle, the system is called to precisely assess the possible
differences between the actual and desired state. Assessing such differences
does not necessarily entails the necessity for a system reaction, as the schedule
is in general synthesized according to flexibility criteria: only when a true
constraint violation occurs, shall reaction be triggered.

To be more concrete, let us consider the monitoring of a behavioral pat-
tern described by a schedule composed of activities A = {a1, a2, . . . , an} be
the set of activities involved, and C = {c1, c2, . . . , cm} the set of temporal
constraints insisting among the activities. In order to represent an executable
schedule, 〈A,C〉 must be both temporally and resource consistent. It is re-
sponsibility of the caregiver to synthesize a semantically correct plan, while
the system is able to detect possible temporal and resource inconsistencies, af-
ter the problem loading phase. In case of resource inconsistencies (i.e., should
the assisted person be wrongly scheduled to perform two activities at the
same time), the system automatically proposes an alternative plan and waits
for the caregiver’s acceptance; instead, temporal inconsistencies require im-
mediate corrective intervention on behalf of the user. The alternative plan
is computed exploiting the scheduling capabilities of the most recent version
of O-OSCAR Scheduling Architecture [3]: in fact, the ADL Monitor largely
bases upon O-OSCAR’s scheduling and modelling features.

Algorithm 1 shows the execution monitoring algorithm employed in the
RoboCare context. As shown in the algorithm, an “environment sensing”
action is periodically performed (line 2). This occurs by accessing the sym-
bolic representation of the current situation (St). As we show in section 5,
this information is obtained by means of a cooperative multi-agent deduction
process. The details of how deduction occurs starting from the symbolic in-
formation deriving from the sensors is the object of section 5. As a result, the
set Eventst of the occurred events is periodically acquired. By event we mean
any mismatch between the expected situation, according to the caregiver’s
prescriptions, and the actual situation (i.e., a planned action which fails to be
executed, is considered as an event).

16 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

Algorithm 1 The Execution Monitoring Algorithm.

1. while true do
2. Eventst ← St

3. if Eventst 6= ∅ then
4. Cr,t ← removeConstraints()
5. insertContingencies(Eventst)
6. Kt ← ∅
7. while Cr,t 6= ∅ do
8. cj ← chooseConstraint(Cr,t)
9. if ¬ re-insertConstraint(cj) then
10. Kt ← Kt ∪ cj

11. end if
12. end while
13. end if
14. end while

If events are detected, the first action is to remove all the active constraints
present in the schedule (line 4). By active constraints, we mean those which
do not completely belong to the past, with respect to the actual time of
execution tE . More formally, given an execution instant tE and a constraint
ck binding two time points ta and tb, ck is considered idle if and only if
(ta < tE) ∧ (tb < tE). All constraints that are not idle are active. Obviously,
idle constraints do not take part in the analysis because they will not play
any role in the evolution of the future states of the world.

In the next step (line 5) all the detected contingencies, properly modeled
as further constraints, are inserted in the plan. This is the step where the
system updates the internal representation of the schedule in order to preserve
consistency with the world’s true state.

Lines 7–12 implement the constraint re-insertion cycle, where the algo-
rithm tries to restore as many caregiver requirements as possible given the
current situation. Notice in fact that it is probable that not all the original
constraints will be accepted at this point: the occurrence of the contingen-
cies might in fact have changed the temporal network constrainedness, so as
to make impossible the complete re-insertion of the constraints removed at
the previous step. During the cycle, all the constraints which are rejected are
stored in the set Kt.

Constraints insertion (and rejection) is an extremely delicate issue, for
many reasons:

• System reaction may consist in verbal suggestions or warning. The infor-
mation conveyed by these messages strongly depends on the contents of
the set Kt. The analysis of all the rejected constraints quantitatively and
qualitatively determines the system’s response. Given a temporal network
TN underlying the current schedule, the set Kt = {kt,1, kt,2, ..., kt,r} must
be such that: (1) the insertion of each kt,j in TN causes a propagation

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 17

failure; (2) the cardinality of Kt is maximum. Condition (1) ensures that
every constraint in Kt plays a role in determining system’s reaction, rul-
ing out false-positive situations; condition (2) ensures that no contingency
escapes system’s attention.

• The acceptance of each constraint cj (and complementarily, the contents of
Kt), is generally dependent on the particular order chosen for re-insertion.
In general, a number of different choice heuristics (chooseConstraint()
method) can be envisaged, leading to different approaches for contingency
management. To clarify this issue, let us consider a temporal network TN
and two constraints c1 and c2 such that the attempt of posting both of
them in TN would determine an inconsistency: in this case, if the insertion
order is {c1, c2}, then c2 is going to be rejected; if the opposite order is
used, c1 is rejected. Since in the RoboCare context it is essential that the
reaction be related to the closest contingency with respect to execution
time tE , the particular heuristic employed for re-insertion is backward-
chronological. The result of this choice is that the rejected constraints will
be the ones which are temporally closer to the actual instant of execution,
therefore meeting the condition of reaction urgency. In other terms, the
RoboCare monitoring system is oriented towards synthesizing a sugges-
tion regarding the primary cause of a violation, rather than forming one
based on a distant effect of the assisted person’s behavior. The constraints
are chronologically ordered taking into account the values of the time point
pairs they are connected to. More formally, given a set of constraints
{c1(t1,s, t1,e), c2(t2,s, t2,e), . . . , cn(tn,s, tn,e)}, where each ci(ti,s, ti,e) con-
nects the time points ti,s and ti,e, the constraint ci(ti,s, ti,e) chronologically
precedes the constraint cj(tj,s, tj,e), if min(ti,s, ti,e) < min(tj,s, tj,e).

• The importance of maximizing the number of accepted constraints is di-
rectly linked to the need to maintain a schedule’s representation which is
at all times as close as possible to the original specifications, despite the
assisted person’s actions. The reason is twofold:
1. the system should at all times be able to give correct answers to ques-

tion related to future allocations of the activities, as well as to the tem-
poral bounds insisting among them: Questions like:“At what time do I
have to take my medication?” or “How much time have I got between
lunch and dinner?” should always be answered correctly (according to
the original caregiver’s plan);

2. the system should retain the ability to perform correct what-if analysis,
in order to deliver reliable information in case of requests like:“If I go
for a walk at four o’clock, will I come back in time to watch my favourite
TV show?”. It is straightforward how the reliability of the answer is
strictly related to the quantity of original temporal information that
the system is able to retain during the monitoring.

Figure 6 depicts a snapshot during the execution monitoring of a schedule
composed of three activities. Activity A1 is currently under execution, as

18 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

Fig. 6. A simple schedule being monitored

the tE time now mark shows, while activities A2 and A3 have yet to be
executed. The thick arrows before the activities show that A1 did not begin
at the originally scheduled time, but underwent a certain delay. Note that as
a consequence of A1’s postponement, also A2 and A3 have been delayed. This
is caused by the existence of minimum time constraints between the end of A1

and the beginning of A2 and A3. This example shows the system’s capabilities
to maintain temporal information in terms of constraints among the activities,
despite the occurrence of disturbing events.

4.4 From Constraint Violations to Verbal Interaction

After each detection cycle, every constraint in the set Kt undergoes a thorough
analysis. All possible semantic associations between the type of violated con-
straint and some particular execution conditions are explored in order to trig-
ger meaningful and intelligent system reaction.

Fig. 7. Situation assessment during exe-
cution monitoring.

User interaction with the robot is en-
sured through the coupling of a voice
recognition system callled Sonic, de-
veloped at the University of Col-
orado, and a speech synthesis system
called Lucia, developed at the Insti-
tute of Cognitive Sciences and Tech-
nologies of Padua. Lucia is a software
talking head, able to verbalize and
mime phrases in text form. Verbal-
ization synthesis and user feedback

interpretation is demanded to a particular agent, called ChickenBrain on ac-
count of its so far limited capabilities.

Information about timings of past, present and future actions is conti-
nously retained: coupling this information with proper constraint violation
analysis turns out to be extremely useful. For instance, let us suppose that

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 19

two scheduled activities are being monitored, in particular the activity of
cooking and having lunch; let us also suppose that these two activities are
temporally constrained so that having lunch should follow cooking but no
later than two hours after cooking. If the assisted person starts having lunch
too soon (i.e., violating the minimum constraint between the two activities),
the system should issue a warning. Obviously, constraint violation alone is not
enough to synthesize a meaningful warning verbalization. In fact, it is very
useful to integrate the information about the state of the cooking activity (see
figure 7): for instance, depending whether the assisted person has performed
the cooking or not, the system might suggest to delay the lunch or to prepare
something warm to eat. This simplified semantic analysis is performed by the
ChickenBrain agent, which is also responsible for the coordination and man-
agement of information synthesis and exchange to/from the robot, through
the talking face Lucia. As figure 7 shows, system reaction may involve a sim-
ple verbalization, a physical action (the robot goes to the assisted person), or
a combination of the two, depending on the nature of the triggering event.

5 Multi-Agent Coordination Infrastructure

Coordination of multiple services is achieved by solving a Multi-Agent Co-
ordination (MAC) problem. The MAC is cast as a Distributed Constraint
Optimization Problem (DCOP), and solved by Adopt-N [4], an extension
of the Adopt (Asynchronous Distributed Optimization) algorithm [21] for
dealing with n-ary constraints.

The agents placed in the environment are a combination of sensors and
actuators. In addition, the ADL monitor has a somewhat double nature. This
is because the ADL monitor can operate according to two possible modalities:
the assisted person may want to ask “have I taken my afternoon medication?”,
thus the more sensor-like role of the ADL; on the other hand, upon ascertain-
ing that the assisted person has not taken an important item of medication,
the ADL can itself intervene pro-actively, e.g., issuing a suggestion or warning.

One of the most crucial issues which arises when integrating diverse agents
is that of coordination. Specifically, the combination of basic services provided
by all these agents is accomplished by a distributed constraint reasoning in-
frastructure. The coordination scheme provides a “functional cohesive” for
the elementary services, as it defines the rules according to which the services
are triggered. Each service corresponds to a software agent to which tasks are
dynamically allocated in function of the current state of the environment and
of the assisted person. For instance, if the PLT and PR services recognize that
the assisted person is lying on the floor in the kitchen (a situation which is
defined as “anomalous” in the overall rule set), then the coordination mecha-
nism will trigger the robot to navigate towards the assisted person’s location
and ask whether everything is all right.

20 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

The coordination of the above mentioned elementary services is defined so
as to demonstrate complex added value services which require the cooperation
of multiple elementary services. Some examples of global behaviors are the
following:

Scenario 1 The assisted person is in an abnormal posture-location state (e.g.,
lying down in the kitchen). System behavior: the robot navigates to the
person’s location, asks if all is well, and enacts a pre-defined contingency plan,
such as placing an emergency phone call.

Scenario 2 The ADL monitor detects that the time bounds within which to
take a medication are jeopardized by an unusual activity pattern (e.g., the
assisted person starts to have lunch very late in the afternoon). System be-
havior (option 1): the robot will reach the person and verbally alert him/her
of the possible future inconsistency. System behavior (option 2): the in-
consistency is signaled through the PDA.

Scenario 3 The assisted person asks the robot, through the PDA or verbally,
to go and “see if the window is open”. System behavior: the robot will navi-
gate to the designated window (upon obtaining its location from the fixed stereo
cameras) and (option 1) relay a streaming video or snapshot of the window
on the PDA, or (option 2) take a video/snapshot of the window, return to
the assisted person and display the information on its screen.

Scenario 4 The assisted person asks the intelligent environment (through the
PDA or verbally to the robot) whether he/she should take a walk now or wait
till after dinner. System behavior: the request is forwarded to the ADL mon-
itor, which in turn propagates the two scenarios (walk now or walk after din-
ner) in its temporal representation of the daily schedule. The result of this
deduction is relayed to the assisted person through the PDA or verbally (e.g.,
“if you take a walk now, you will not be able to start dinner before 10:00 pm,
and this is in contrast with a medication constraint”).

5.1 Casting the MAC Problem

As mentioned, multi-agent coordination is cast as a distributed constraint op-
timization problem and solved by the agents according to the (distributed)
Adopt-N algorithm. Specifically, a distributed constraint optimization prob-
lem is a tuple 〈V,D, C〉 where V = {v1, . . . , vn} are variables with values in
the domains {D1, . . . , Dn} = D, and C is a set of constraints among vari-
ables. Constraints may involve an arbitrary subset of the variables (n-ary
constraints): a constraint among the set C ⊂ V of k variables is expressed
as a value function in the form fC : D1 × . . . × Dk → N. For instance, a
constraint involving the three variables {v1, v3, v7} may prescribe that the
cost of a particular assignment of values to these variables amounts to c, e.g.,
fv1,v3,v7 (0, 3, 1) = c. The objective of a constraint optimization algorithm is

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 21

to calculate an assignment A of values to variables while minimizing the cost
of the assignment

∑
C∈C fC(A), where each fC is of arity |C|.

In the specific case of the RDE, the cost function is modeled so as to reflect
the desiderata of system behavior. Specifically, the domains of the variables
model the states of the services (i.e., what the system can provide) as well
as the possible states of the environment and of the assisted person (i.e.,
what can occur). Constraints bind these variables to model relations among
services, that is, the overall behavior of the smart home and how knowledge
is shared among the agents.

In general, the variables represent input for the decision process and/or in-
structions for controlling the enactment of the services provided by the RDE.
For instance, the PLTState variable represents the position of the assisted
person in the environment (whose domain is DPLTState = {KITCHEN,
LIV INGROOM,BATHROOM, BEDROOM, UNKNOWN}), while the
PRState variable carries the information on the person’s posture (DPRState =
{STANDING, SEATED, LY ING, UNKNOWN}). These two variables
are purely “sensory”, as their value is determined by the sensory input ob-
tained from the PLT and PR services. An example of “enactment” vari-
able is RobotCommand, which is set autonomously by its agent according
to the decisions taken during the execution of the Adopt-N cooperative
solving algorithm. Moreover, agents can have more than one variable. This
is the case of the agent representing the robot, which also has the vari-
able RobotState representing the current task in wihch the robot is engaged
(DRobotState = {DONE,COMPUTING,FAILED, INACTIV E}).

The value functions which model the constraints in the system describe
a global cost function whose minima represent the desired system behavior.
All consistent states evaluate to a global cost of 0, while inconsistent situ-
ations evaluate to ∞. Consistent states establish a correspondence between
observations from the sensors and the desired combination of behaviors of the
services. For reasons of space we cannot describe the full set of constraints
which models the behavior of the RDE as it is instantiated in the Robo-
Care lab. One meaningful example of such constraints is the following: when
the PLT and PR sensors assess that there is an emergency situation (e.g.,
the assisted person is lying on the floor in the kitchen), the PLTState and
PRState variables are set to KITCHEN and LY ING respectively; we wish
to model the fact that the variable representing the assisted person’s current
activity (Activity) should be set to EMERGENCY in the event of anoma-
lous situations such as this one; therefore, we model the ternary constraint
C = {PLTState, PRState, Activity}, which prescribes that

fC(KITCHEN,LY ING, EMERGENCY) = 0
fC(BATHROOM, LY ING,EMERGENCY) = 0
. . .

and that all assignments such that the situation does not appear to be an
emergency and variable Activity = EMERGENCY have infinite cost:

22 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

fC(KITCHEN,SEATED, EMERGENCY) = ∞
fC(BEDROOM, STANDING, EMERGENCY) = ∞
. . .

To continue this example, we wish now to model the proper enactment
of Lucia the robotic mediator in case of an emergency (i.e., when the Ac-
tivity variable indicates that the assisted person is in a state of emergency):
we thus need to model the fact that the robot should navigate towards the
assisted person and ask if assistance is needed (an AskIfOkay variable is mod-
eled on the agent representing Lucia’s verbal capabilities); in terms of the
relevant variables this equates to modeling (Activity = EMERGENCY) ∧
(RobotState = DONE) ⇒ (AskIfOkay = Y ES); thus, we specify the ternary
constraint C ′ = {Activity, RobotState, AskIfOkay}, which prescribes that

fC′(EMERGENCY, DONE, Y ES) = 0
fC′(EMERGENCY, FAILED, Y ES) = 0
fC′(EMERGENCY, COMPUTING, Y ES) = 0
fC′(EMERGENCY, INACTIV E, Y ES) = 0

and that all other assignments such that 〈Activity,RobotState, AskIfOkay〉 6=
〈EMERGENCY, DONE, Y ES〉 have infinite cost:

fC′(LUNCH,COMPUTING, Y ES) = ∞
fC′(BREAKFAST, STATE INACTIV E, Y ES) = ∞
. . .

Clearly, the constraint optimization paradigm, as opposed to constraint
satisfaction, allows us to employ also soft constraints, i.e., constraints de-
scribed by cost functions which evaluate to any N and not just 0 or ∞. This is
useful in case we wish to specify degrees of acceptance of the system’s overall
behavior. For instance, it may be useful to model the fact that it is prefer-
able for the robot to reach the assisted person to make a suggestion, but that
a sub-optimal solution in which the robot does not reach the person before
issuing advice is also acceptable. Modeling this kind of situation can facili-
tate the distributed reasoning algorithm because it allows for the existence of
sub-optimal solution assignments which could avoid significant computational
overhead. This is the case, for instance, in Adopt and its variant Adopt-N,
which can perform bounded-error approximation to quickly find approximate
solutions while maintaining a theoretical guarantee on solution quality.

5.2 High-Level Specification of System Behavior

The behavior of the RDE agents as they are set up in the RoboCare lab
in Rome is modeled through a DCOP comprising 6 agents, 11 variables and
over 1100 cost function definitions (corresponding to 11 n-ary constraints).
Indeed, the definition of a complete behavioral model for the RDE cannot be
given without the use of a high level specification formalism.

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 23

Fig. 8. The DCOP specification interface employed for defining the RDE’s overall
behavior.

While the study of an efficient specification language has not been the fo-
cus of our work during the project, an initial interface for facilitating DCOP
formulation has been developed (figure 8). Specifically, the interface allows to
create agents (specifying also the relevant parameters for distribution), vari-
ables and their domains, and constraints among the variables. In addition to
allowing the use of user-intelligible names for domain values, the system al-
lows to visually establish constraints among groups of variables. Also, the user
can specify constraints which model the desired behavior of the agents (i.e.,
describing situations with zero cost) and automatically obtain value function
specifications which model the resulting undesired assignments (i.e., describ-
ing situations with high cost), and vice-versa. This form of automatic no-good
specification is extremely handy in the RDE scenario. In fact, it is often the
case that there are very few assignments which are admissible (thus modeling
them is trivial) while the transitive closure consists of hundreds of no-goods,
the manual definition of which is tedious and error-prone.

In conclusion, it is interesting to notice how the ability of Adopt-N to han-
dle n-ary constraints is an important advantage in the RDE scenario. While it
would be possible to specify the RDE MAC problem in terms of only binary

24 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

constraints, the possibility to employ n-ary constraints is a strong advantage
because it is well suited for modeling complex situations which involve many
different components of the smart home. This renders problem specification
more intuitive as well as more compact (in terms of number of constraints).
Notice, though, that this comes at the price of complex value functions as
mentioned above. In this respect, the DCOP specification interface is a strong
added value as it allows intuitive constraint specification while minimizing the
impact of constraint complexity.

5.3 Cooperatively Solving the MAC Problem

As noted, an Adopt-N agent is instantiated for each service provided by the
components of the RDE. Given the current situation S, these agents commu-
nicate to each other messages which allow them to trigger the appropriate
behavior. Clearly, the state of the environment, of the assisted person, and of
the services themselves changes in time: let the situation (i.e., the state of the
environment, of the assisted person and of the services) at time t be St. The
DCOP formulation of the MAC described earlier represents the desired be-
havior of the system in function of the possible states of the RDE. Therefore,
if St 6= St−1, the Adopt-N agents must trigger an “instance of coordination”
so as to decide the assignment A which represents the desired enactment of
services.

One of the challenges of the RDE scenario with respect to distributed co-
ordination is the heterogeneity of the agents. The strong difference in nature
between the various components of the RDE reflects heavily on the coordi-
nation mechanism. This is because of the uncertainty connected to the time
employed by services to update the symbolic information which is passed on
to the agents. For instance, the PLT service is realized through an artificial
stereo-vision algorithm the convergence of which is strongly affected by a vari-
ety of factors: first of all, object tracking is difficult when many similar objects
move in the same space; second, object recognition is generally difficult when
the environment and the agents cannot be adequately structured; third, when
moving observers are used for monitoring large environments the problem
becomes harder since it is necessary to take into account also the noise intro-
duced by the motion of the observer. A similar problem affects also the ADL
monitor, which must propagate sensor-derived information on the temporal
representation of the behavioral constraints. The aim of the ADL monitor is
to constantly maintain a schedule which is as adherent as possible to the as-
sisted person’s behavior in the environment. This may require a combination
of simple temporal propagation, re-scheduling, as well as other complex pro-
cedures (e.g., deciding which of the violated constraints are meaningful with
respect to verbal warnings and suggestions).

As a consequence, it is in general impossible to have strict guarantees on
the responsiveness of the agents. For this reason the albeit asynchronous solv-
ing procedure needs to be iterated synchronously. More specifically, Adopt-N

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 25

Algorithm 2 Synchronization schema followed by each Adopt-N agent a in the
RDE.

1. t ← 0
2. St ← getSensoryInput(Va)
3. while true do
4. St−1 ← St

5. while (St = St−1) ∧ (t ≥ a′.t, ∀a′ 6= a) do
6. St ← getSensoryInput(Va)
7. end while
8. t ← t + 1
9. forall di ∈ Dv∈Va do
10. lb(di) ← 0 /** Reset lower and **/
11. ub(di) ←∞ /** upper bounds **/
12. end for
13. A|Va ← runAdopt() /** Iteration terminates on Adopt-N termination **/
14. triggerBehavior(A|Va)
15. end while

is deployed in the RDE as described in algorithm 2, according to which the
agents continuously monitor the current situation, and execute the Adopt-
N algorithm whenever a difference with the previous situation is found. The
getSensotyInput() method in the pseudo-code samples the state of the envi-
ronment which is represented by agent a’s variables Va (what we have infor-
mally called “sensory” variables). Specifically, the values of these variables
are constrained to remain fixed on the sensed value during the execution of
the Adopt-N decision process. In practice, this occurs by posting a unary
constraint which prescribes that any value assignment which is different from
the sensed value should evaluate to ∞, and is therefore never explored by the
agent controlling the variable. This constraint posting mechanism is a feature
of Adopt-N. Clearly, it is also possible to restrict the values of these vari-
ables by modifying the problem before each iteration. The constraint posting
strategy was employed to facilitate representation and re-use of code. In fact,
the DCOP problem never needs to change between iterations, and this allows
to minimize the re-initialization phase between iterations (which can be re-
duced to resetting the lower and upper bounds of the domain values for each
variable as shown in the algorithm — see [21, 4] for details on the Adopt and
Adopt-N algorithms). Moreover, posting a unary constraint on a variable for
the entire duration of the solving process does not affect the computational
complexity of the algorithm.

Notice, though, that Adopt and its variant Adopt-N do not rely on
synchronous communication between agents, thus natively supporting mes-
sage transfer with random (but finite) delay. This made it possible to employ
Adopt-N within the RDE scenario without modifying the algorithm inter-
nally. Furthermore, while most distributed reasoning algorithms (like Adopt

26 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

itself) are employed in practice as concurrent threads on a single machine (a
situation in which network reliability is rather high), the asynchronous quality
of Adopt-N strongly facilitated the step towards “real” distribution, where
delays in message passing increases in magnitude as well as randomness.

6 Conclusions

During the first two years of project development, efforts were concentrated on
developing the technology to realize the individual components (or services)
of the RDE. The services provided by this technology were deployed in the
environment according to a service-oriented infrastructure, which is described
in [22]. This allowed to draw some interesting conclusions on the usefulness
of robots, smart sensors, and pro-active domestic monitoring in general (see,
e.g., [23]).

In the final year of the project, and in part towards the goal of partici-
pating in the RoboCup@Home competition, the attention shifted from single
component development to the functional integration of a continuous and
context-aware environment. The issue was to establish a convenient way to
describe how the services should be interleaved in function of the feedback
obtained from the sensory sub-system and the user. The strategy we chose
was to cast this problem, which can also be seen as a service-composition
problem, in the form of a multi-agent coordination (MAC) problem.

It is interesting to notice that the specific constraint-based formulation of
the MAC problem is strongly facilitated by the possibility to encode n-ary
constraints. As discussed, this is convenient for modeling the functional rela-
tionship among multiple services as it allows to precisely indicate the relation-
ships between sensed input and the resulting enactment. Another advantage of
the constraint-based formulation is that the system is easily scalable. In fact,
adding another sensor, service or intelligent functionality requires adding an
Adopt-N agent and its variables to the problem, and system behavior can
be specified incrementally.

Finally, as noted earlier, an interesting area for future research is the de-
velopment of more powerful formalisms for specifying service interaction and
invocation in terms of a DCOP problem. One of the goals of RoboCare has
been to develop technology which is at least to a certain degree useable by
non-experts11. The knowledge acquired in three years of RoboCare can cer-
tainly contribute to building systems which are close to becoming market-level
products.

11 See, e.g., the behavioral constraint specification formalism used by caregivers
described in [1].

Robotic, Sensory and Problem-Solving Ingredients for the Future Home 27

References

1. F. Pecora, R. Rasconi, G. Cortellessa, and A. Cesta, “User-Oriented Problem
Abstractions in Scheduling, Customization and Reuse in Scheduling Software
Architectures,” Innovations in Systems and Software Engineering, vol. 2, no. 1,
pp. 1–16, 2006.

2. A. Cesta, G. Cortellessa, A. Oddi, N. Policella, and A. Susi, “A constraint-based
architecture for flexible support to activity scheduling,” ser. Lecture Notes on
Artificial Intelligence (LNAI), vol. 2175. F. Esposito (Ed.), 2001, pp. 369–381.

3. A. Cesta, R. Rasconi, G. Cortellessa, A. Oddi, F. Pecora, and N. Policella, “O-
OSCAR 2.0: a Flexible Scheduling Tool for Total Plan Life-Cycle Support,”
ISTC-CNR, Institute for Cognitive Science and Technology, Italian National
Research Council, Tech. Rep., October 2004.

4. F. Pecora, P. Modi, and P. Scerri, “Reasoning About and Dynamically Posting n-
ary Constraints in ADOPT,” in Proceedings of 7th Int. Workshop on Distributed
Constraint Reasoning, at AAMAS’06, 2006.

5. P. Cosi, A. Fusaro, and G. Tisato, “LUCIA a New Italian Talking-Head Based
on a Modified Cohen-Massaros Labial Coarticulation Model,” in Proceedings of
Eurospeech 2003, Geneva, Switzerland, 2003., 2003.

6. K. Konolige, “Small vision systems: Hardware and implementation,” in Proc. of
8th International Symposium on Robotics Research, 1997.

7. N. Friedman and S. Russell, “Image segmentation in video sequences: a prob-
abilistic approach,” in Proc. of 13th Conf. on Uncertainty in Artificial Intelli-
gence, 1997.

8. C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-time
tracking of the human body,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 19, no. 7, pp. 780–785, 1997.

9. C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for
real-time tracking,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR’99), 1999, pp. 246–252.

10. M. Harville, G. Gordon, and J. Woodfill, “Foreground segmentation using adap-
tive mixture models in color and depth.” in Proc. of IEEE Workshop on Detec-
tion and Recognition of Events in Video, 2001, pp. 3–11.

11. T. Darrell, D. Demirdjian, N. Checka, and P. F. Felzenszwalb, “Plan-view tra-
jectory estimation with dense stereo background models,” in Proc. of 8th Int.
Conf. On Computer Vision (ICCV’01), 2001, pp. 628–635.

12. D. Beymer and K. Konolige, “Real-time tracking of multiple people using
stereo,” in Proc. of IEEE Frame Rate Workshop, 1999.

13. J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and S. Shafer, “Multi-
camera multi-person tracking for easyliving,” in Proc. of Int. Workshop on Vi-
sual Surveillance, 2000.

14. A. Mittal and L. S. Davis, “M2Tracker: A multi-view approach to segmenting
and tracking people in a cluttered scene using region-based stereo,” in Proc.
of the 7th European Conf. on Computer Vision (ECCV’02). Springer-Verlag,
2002, pp. 18–36.

15. I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: Real-time surveillance of peo-
ple and their activities,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, 2000.

28 Cesta, Iocchi, Leone, Nardi, Pecora and Rasconi

16. K. Roh, S. Kang, and S. W. Lee, “Multiple people tracking using an appear-
ance model based on temporal color,” in Proc. of 15th Int. Conf. on Pattern
Recognition (ICPR’00), 2000.

17. J. Li, C. S. Chua, and Y. K. Ho, “Color based multiple people tracking,” in
Proc. of 7th Int. Conf. on Control, Automation, Robotics and Vision, 2002.

18. J. Kang, I. Cohen, and G. Medioni, “Object reacquisition using invariant ap-
pearance model,” in Proc. of 17th Int. Conf. on Pattern Recognition (ICPR’04),
2004.

19. M. Isard and A. Blake, “Condensation – conditional density propagation for
visual tracking,” International Journal of Computer Vision, vol. 29, no. 1, pp.
5–28, 1998.

20. R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,” Artificial
Intelligence, vol. 49, pp. 61–95, 1991.

21. P. Modi, W. Shen, M. Tambe, and M. Yokoo, “Adopt: Asynchronous distributed
constraint optimization with quality guarantees,” Artificial Intelligence, vol.
161, pp. 149–180, 2005.

22. S. Bahadori, A. Cesta, L. Iocchi, G. Leone, D. Nardi, F. Pecora, R. Rasconi,
and L. Scozzafava, “Towards Ambient Intelligence for the Domestic Care of the
Elderly,” in Ambient Intelligence: A Novel Paradigm, P. Remagnino, G. Foresti,
and T. Ellis, Eds. Springer, 2004.

23. A. Cesta and F. Pecora, “Integrating Intelligent Systems For Elder Care In
RoboCare,” in Promoting Independence for Older Persons with Disabilities,
W. Mann and A. Helal, Eds. IOS Press.

